Scattering theory for energy-supercritical Klein-Gordon equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scattering theory for Klein-Gordon equations with non-positive energy

We study the scattering theory for charged Klein-Gordon equations:  (∂t − iv(x))2φ(t, x) + (x,Dx)φ(t, x) = 0, φ(0, x) = f0, i−1∂tφ(0, x) = f1, where: (x,Dx) = − ∑ 1≤j,k≤n ( ∂xj − ibj(x) ) a(x) (∂xk − ibk(x)) +m (x), describing a Klein-Gordon field minimally coupled to an external electromagnetic field described by the electric potential v(x) and magnetic potential ~b(x). The flow of the Kle...

متن کامل

Analytical solutions for the fractional Klein-Gordon equation

In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.

متن کامل

B-SPLINE COLLOCATION APPROACH FOR SOLUTION OF KLEIN-GORDON EQUATION

We develope a numerical method based on B-spline collocation method to solve linear Klein-Gordon equation. The proposed scheme is unconditionally stable. The results of numerical experiments have been compared with the exact solution to show the efficiency of the method computationally. Easy and economical implementation is the strength of this approach.  

متن کامل

Nonlinear Klein-Gordon Equation

An extended ( ′ G )–expansion method is obtained by improving the form of solution in ( G′ G )– expansion method which is proposed in recent years. By using the extended ( ′ G )–expansion method and with the aid of homogeneous balance principle, many explicit and exact travelling wave solutions with two arbitrary parameters to the Klein-Gordon equation are presented, including the hyperbolic so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S

سال: 2016

ISSN: 1937-1632

DOI: 10.3934/dcdss.2016085